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Goals

 To provide the tools and techniques necessary to design 
and implement large-scale computer systems.

 solid foundation in data abstraction, algorithm specification and 

performance analysis and measurement provides the necessary 

methodology.
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1.1 SYSTEM LIFE CYCLE

 Requirement

 a set of specifications that define the purpose of the project.

 input/output

 Analysis

 break the problems down into manageable pieces.

 bottom-up / top-down 

 Design

 creation of abstract data types 

 specification of algorithms and consideration of algorithm 
design strategies.

(* language independent *)
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 Refinement and Coding 

 choose representations for data objects and write algorithms 
for each operation on them.

 data object's representation can determine the efficiency of 
the algorithms related to it.

 Verification

 Developing correctness proof for the program

 Testing the program with a variety of input data

 Error removal

 Performance analysis
 running time

 amount of memory used
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1.2 ALGORITHM  SPECIFICATION

1.2.1 Introduction
 Definition: 

An algorithm is a finite set of instructions that,  if followed, 
accomplishes particular task.

All algorithms must satisfy the following criteria:

(1) Input

(2) Output

(3) Definiteness

(4) Finiteness

(5) Effectiveness

algorithm / program (procedure)
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 How to describe an algorithm

natural language

flowchart

programming language

 Example 1.1 [Selection Sort]

Sorting a set of n  1 integers

From those integers that are currently unsorted,                   
find the smallest and place it next in the sorted list.
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 [Program 1.1   Selection sort algorithm]

for (i=0; i<n; i++) {

Examine list[i] to list[n-1]

and suppose that the smallest integer is at list[min]; 

Interchange list[i] and list[min]; 

}

 first task : finding the smallest integer;

 second task : exchange;

either a function or a macro
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 [Program 1.2   swap function]

void swap(int *x, int *y)

/* both parameters are pointers to ints */

{

int temp = *x; /* declare temp as an int and assign to it

the contents of what x points to */

*x = *y;         /* stores what y points to into the location

where x points  */

*y = temp;     /* place the contents of temp in the location

pointed to by y */

}

Call -- swap(&a, &b)
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 macro version of swap -

#define SWAP(x,y,t)    ((t) = (x), (x) = (y), (y) = (t))

 [Program 1.3 Selection sort]

void sort (int list[], int n)

{

int i, j, min, temp;

for (i=0; i<n-1; i++)  {

min = i;

for (j = i+1; j < n; j++)

if (list[j] < list[min])

min = j;

SWAP(list[i], list[min], temp);

}

}
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 Theorem 1.1:

Function sort(list,n) correctly sorts a set of n≥1 integers. The 

result remains in list[0], . . ., list[n-1] such that 
list[0]≤list[1]≤ . . . ≤list[n-1].

proof :  consider loop invariant.
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 Example 1.2 [Binary Search]

Find out if an integer searchnum is in a list.

If so, return i such that list[i] = searchnum, 
Otherwise, return -1.

For a sorted list (in ascending order)

0                                     n-1
list :

↑               ↑                 ↑
left          middle          right

middle = (left + right) / 2
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 Compare list[middle] with searchnum

 searchnum < list[middle]

if searchnum is present, it must be in the position

between left and middle-1.

set right to middle-1.

 searchnum = list[middle]

return middle.

 searchnum > list[middle]

if searchnum is present, it must be in the position

between middle+1 and right.

set left to middle+1
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 Implementing this search strategy :

while (there are more integers to check) {

middle = (left + right) / 2;

if (searchnum < list[middle])

right = middle - 1;

else if (searchnum == list[middle])

return middle;

else left = middle + 1;

}
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 Handling the comparisons:

<             returns             -1

= 0

> 1
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 function -

int compare (int x, int y)

{

/* compare x and y, return -1 for less than,

0 for equal, 1 for greater */

if (x < y) return -1;

else if (x == y) return 0;

else return 1;

}

 macro -

# define COMPARE (x,y) ((x) < (y)) ? -1: ((x) == (y)) ? 0: 1)
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 [Program 1.6]

int binsearch(int list[], int searchnum, int left, int right)
{

/* search list[0] <= list[1] <= . . . <= list[n-1] for    searchnum. 
Return its position if found.  Otherwise return -1 */

int middle;
while (left <= right)  {

middle = (left + right)/2;
switch (COMPARE(list[middle], searchnum)) {

case -1 : left = middle + 1;
break;

case 0 : return middle;
case 1 : right = middle - 1;

}
}
return -1;

}
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1.2.2  Recursive Algorithms

Direct recursion

Indirect recursion

 Recursion is a general control scheme.

 Often recursive function is easier to understand than its iterative 
counterpart.

 Many problems can be defined recursively in natural way.
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 [Binomial Coefficients]

can be recursively computed by the formula:
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 Examples :

 [factorial]

n! = { n * (n-1)! if n>1

1 if n=1

 [Binary search]

Bsrch[key, left, middle-1]

if key < list[middle]

Bsrch[key, left, right] = list[middle]

if key = list[middle]

Bsrch[key, middle+1, right]

if key > list[middle]
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 [Fibonacci numbers]

0 if n=0

fn = 1 if n=1

fn-1 + fn-2 if n>1

 [Permutations]

We can construct the set of permutations by printing:

(1) a followed by all permutations of (b, c, d)

(2) b followed by all permutations of (a, c, d)

(3) c followed by all permutations of (a, b, d)

(4) d followed by all permutations of (a, b, c)
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Iterative function

int fibo(int n)
{

int g, h, f, i;
if (n>1) {

g = 0;
h = 1;
for (i = 2; i<= n; i++) {

f = g+h;
g = h;
h = f;

}
}
else f = n;
return f;

}

Recursive function

int rfibo (int n)
{

if (n > 1)
return rfibo(n-1) + rfibo(n-2);

else
return n;

}
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 [Program 1.7]

int binsearch(int list[], int searchnum, int left, int right)

{
/* search list[0] <= list[1] <= . . . <= list[n-1] for searchnum.

Return its position if found. Otherwise return -1 */

int middle;
if (left <= right) {

middle = (left + right)/2;
switch (COMPARE(list[middle], searchnum)) {

case -1 : return binsearch(list, searchnum, middle + 1, right);
case 0 : return middle;
case 1 : return binsearch(list, searchnum, left, middle - 1);

}
}
return -1;

}
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 [Program 1.8]
void perm(char *list, int i, int n)
{

/* generate all the permutations of list[i] to list[n] */
int j, temp;
if (i == n) {

for (j=0; j<=n; j++) printf("%c", list[j]);
printf(" ");

}
else {
/* list[i] to list[n] has more than one permutation,

generate these recursively */
for (j=i; j<=n; j++) {

SWAP(list[i], list[j], temp);
perm(list, i+1, n);
SWAP(list[i], list[j], temp);

}
}

}
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1.3 DATA ABSTRACTION

 basic data types of C :

char, int, float, double, . . .

short, long, unsigned

 mechanisms for grouping data together :

Arrays and Structs

int list[5];

struct student {

char last_name[10];

int student_id;

char grade;

};
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 pointer data type :

for every basic data type

there is a corresponding pointer data type, such as

pointer-to-an-int,

pointer-to-a-real,

pointer-to-a-char,

and pointer-to-a-float.

int i, *pi;

predefined data types  /  user-defined data types
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"What is a data type?"

 Definition :

A data type is a collection of objects and a set of operations
that act on those objects.

▶ specification of objects

e.g., type int,

{0, +1, -1, +2, -2, . . ., INT_MAX, INT_MIN}

specification of operations

▶ representation of objects

implementation of operations
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 Definition : 

An abstract data type (ADT) is a data type that is organized in 
such a way that the specification of the objects and the 
specification of the operations on the objects is separated from 
the representation of the objects and the implementation of the 
operations.

 an abstract data type is implementation independent.

Specification of operations consists of the names of operations, 
the type of its arguments, and the type of its result. Also a 
description what the function does without appealing to internal 
representation details.

package in Ada

class in C++
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 Categories to classify the operations of a data types:

 Creator/constructor

 Transformers

 Observers/reporters
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 Example 1.5  [ Abstract data type Natural_Number]

ADT Natural_Number is
object: an ordered subrange of the integers starting at zero and ending at the 
maximum integer (INT_MAX) on the computer
functions:

for all x, y IN Nat_Number, TRUE, FALSE IN Boolean
and where +, -, <, and == are usual integer operations

Nat_No Zero() ::=  0
Boolean Is_Zero(x) ::=  if (x) return FALSE

else return TRUE
Nat_No Add(x, y) ::=  if ((x+y)<= INT_MAX) return  x+y

else return INT_MAX
Boolean Equal(x, y) ::=  if  (x==y) return TRUE

else return FALSE
Nat_No Successor(x) ::=  if (x == INT_MAX) return x

else return x+1
Nat_No Subtract(x,y)   ::=  if (x<y) return 0

else return x-y
end Natural_Number
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1.4 PERFORMANCE ANALYSIS

 Criteria of judging a program:

1. Does the program meet the original specification of the 
task?

2. Does it work correctly?

3. Is the program well documented?

4. Does the program effectively use functions to create logical 
units?

5. Is the program’s code readable?

[Performance Evaluation]

6. Does the program efficiently use primary and secondary 
storage?

7. Is the program’s running time acceptable for the task?
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 Performance Analysis :

estimates of time and space that are machine independent.

 Performance Measurement :

obtaining machine-dependent running times.

used to identify inefficient code segments.

 Definition : 

The space complexity of a program is the amount of 
memory that it needs to run to completion. 

The time complexity of a program is the amount of 
computer time that it needs to run to completion.
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1.4.1  Space Complexity

 Fixed space requirements : 

independent from the number and size of the program's inputs 
and outputs, e.g., the instruction space, space for simple 
variables, fixed-size structured variables, and constants.

 Variable space requirements :

space needed by structured variables whose size depends on 
the particular instance, I, of the problem being solved.

(I) 

S(P) = c +    (I)
SP

PS
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 Example 1.6 : [simple arithmetic function]

(I) = 0.

[Program 1.9]

float abc (float a, float b, float c)

{

return a+b+b*c + (a+b-c)/(a+b) + 4.00;

}

Sabc
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 Example 1.7 : [adding a list of numbers iteratively]

[Program 1.10]

float sum(float list[], int n)

{
float tempsum = 0;
int i;
for (i=0; i<n; i++)

tempsum += list[i];
return tempsum;

}

(n) = n if parameters are passed by value.
(n) = 0 if parameters are passed by reference

S sum

S sum
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 Example 1.8 : [adding a list of numbers recursively]

[Program 1.11]

float rsum(float list[], int n)

{

if (n) return rsum(list, n-1) + list[n-1];

return 0;

}

(n) = 12*nS rsum
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Figure 1.1 : Space needed for one recursive call of program 1.11

Type Name Number of bytes

parameter: array pointer
parameter: integer
return address: (used internally)

list[]
n

4
4
4

TOTAL per recursive call 12
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1.4.2  Time Complexity

(1) Compile Time

(2) Execution (Running) Time

We are really concerned only with the program's execution time.
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 Determining the execution time :
 the times needed to perform each operation.
 the number of each operation performed for the given 

instance  (dependent on the compiler).

 Obtaining such a detailed estimate of running time is rarely 
worth the effort.

 Counting the number of operations the program performs gives 
us a machine-independent estimate.
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 Definition : 

A program step is a syntactically or semantically meaningful 
program segment whose execution time is independent of the 
instance characteristics.

Determining the number of steps that a program or a function 
needs to solve a particular problem instance by creating a 
global variable, count, and inserting statements that increment 
count
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 [Example 1.9] [Iterative summing of a list of numbers]

[Program 1.12]

float sum(float list[], int n)

{

float tempsum = 0; count++; /*for assignment*/

int i;

for (i=0; i<n; i++) {

count++; /*for the for loop */

tempsum += list[i]; count++; /*for assignment*/

}

count++; /* last execution of for */

count++; /* for return */ return tempsum;

}



21

Data Engineering & Mobile Computing Laboratory.
41

[Program 1.13]

float sum(float list[], int n)

{
float tempsum = 0;
int i;
for (i=0; i<n; i++)

count += 2; /*for the for loop */
count += 3;
return 0;

}

If the initial value of count is 0, its final value will be 2n+3 .
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 [Example 1.10] [Recursive summing of a list of  numbers]

[Program 1.14]

float rsum(float list[], int n)

{

count++;    /* for if conditional */

if (n) {

count++; /* for return and rsum invocation */

return rsum(list, n-1) + list[n-1];

}

count++;  

return list[0];

}

the step count is 2n+2 .
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 [Example 1.11] : [Matrix addition]

[Program 1.15]

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],

int c[][MAX_SIZE], int rows, int cols)

{

int i, j;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++)

c[i][j] = a[i][j] + b[i][j];

}
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[Program 1.16]

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],

int c[][MAX_SIZE], int rows, int cols)
{

int i, j;
for (i=0; i<rows; i++) {

count++; /* for i for loop */
for (j=0; j<cols; j++) {

count++; /* for j for loop */
c[i][j] = a[i][j] + b[i][j];
count++; /* for assignment statement */

}
count++; /* last time of j for loop */

}
count++; /* last time of i for loop */

}
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[Program 1.17]

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],

int c[][MAX_SIZE], int rows, int cols)

{

int i, j;

for (i=0; i<rows; i++) {

for (j=0; j<cols; j++)

count += 2;

count += 2;

}

count++;

}

The step count will be 2 rows *cols + 2rows +1
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 Tabular method: steps/execution

[Figure 1.2]

Statement s/e Frequency Total steps

float sum(float list[], int n)

{

float tempsum=0;

int i;

for (i=0; i<n; i++)

tempsum += list[i];

return tempsum;

}

0 0 0

0 0 0

1 1 1

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+3
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 [Example 1.13]

[Figure 1.3]

Statement s/e Frequency Total steps

float rsum(float list[], int n)

{

if (n)

return rsum(list, n-1)+list[n-1];

return list[0];

}

0 0 0

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+2
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 [Example 1.14]

[Figure 1.4]

Statement s/e Frequency Total Steps

void add(int a[][MAX_SIZE])

{

int i, j;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++)

c[i][j]=a[i][j]+b[i][j];

}

0 0 0

0 0 0

0 0 0

1 rows + 1 rows + 1

1 rows·(cols+1) rows·cols + rows

1 rows·cols rows·cols

0 0 0

Total 2rows·cols + 2rows + 1
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Summary

 Time complexity of a program is given by the number of steps 
taken by the program to compute the function it was written for.

 The number of steps is itself a function of the instance 
characteristics.

e.g., the number of inputs, the number of outputs, 

the magnitudes of the inputs and outputs, etc.

 Before the step count of a program can be determined, we need 
to know exactly which characteristics of the problem are to be 
used.
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 For many programs, the time complexity is not dependent solely 
on the characteristics specified.

 The step count varies for different inputs of the same size.
Best case
Worst case
Average

Examples :
Binary Search
Insertion Sort
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1.4.3 Asymptotic Notation (Ο, Ω, Θ)

 Our motivation to determine step counts:

to compare the time complexities of two programs for the same 
function, and

to predict the growth in run time as the instance characteristics 
change.
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 Determining the exact step count (either worst case or average)
of a program can prove to be an exceedingly difficult task.

 Expending immense effort to determine the step count exactly
isn't a worthwhile endeavor as the notion of a step is itself
inexact.
(e.g., x = y and x = y+z+(x/y)+(x*y*z-x/t) count as one step)

 Because of the inexactness of what a step stands for, the exact
step count isn't very useful for comparative purposes.



27

Data Engineering & Mobile Computing Laboratory.
53

 For most situations, step counts can be represented
as a function of instance characteristics, such as

≤ (n) ≤ or (n, m) = n + m.

What if the difference of two step counts are large?
e.g., 3n+3 versus 100n+10.

What if two step counts are of different orders?
e.g., + n versus n.

 break even point :
The exact break even point cannot be determined analytically.
The programs have to be run on a computer

in order to determine the break even point.

c1n
2

T P c2 n
2

T Q c1 c2

c1 n
2

c2 c3
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Some terminology :

Definition : [Big "oh"]

f(n) = (g(n))

iff there exist positive constants  c and 

such that   f(n)     c g(n)

for all n,  n        .

n0 
n0
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a constant quadratic

logarithm cubic

linear exponential

In order for the statement to be informative, 

should be as small a function of n as one can come up with for 

which .
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 Theorem 1.2 : 

If , then .

 Proof :

So, 

SO,
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 Definition : [Omega]   

iff there exist positive constants 

and such that  

for all                   .
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 Example 1.16 :
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In order for the statement to be informative, 

should be as large a function of

as possible for which is true.

 Theorem 1.3 : 

If  and            , 

then   .
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 Definition :  [Theta]

iff there exist positive constants 

and such that 

for all  .
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 Example 1.17 :
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 Theorem 1.4 : 

If and ,

then .

 Example 1.18: [Complexity of matrix addition]
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 Example 1.19 : [Binary Search]

[Program 1.6]

The instance characteristic -- number of elements in the list.

Each iteration of while loop takes Θ(1) time.

The while loop is iterated at most times.

Worst case - the loop is iterated Θ(log n) times

Best case - Θ(1).
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 Example 1.21 : [Magic square]

The magic square is an          matrix of integers from 1 to             

such that the sum of each row and column and two major 
diagonals is the same.

When n=5 : the common sum is 65.
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 Coxeter's rule :

Put a one in the middle of the top row. Go up and left
assigning numbers in increasing order to empty boxes. If your
move cause you to jump off the square (that is, you go beyond
the square's boundaries), figure out where you would be if you
landed on a box on the opposite side of the square. Continue
with this box. If a box is occupied, go down instead of up and
continue.
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[Program 1.22]

#include <stdio.h>

#define MAX_SIZE  15  /* maximum size of square */

void main(void)

/* construct a magic square, iteratively */

{

static int square[MAX_SIZE] [MAX_SIZE];

int i, j, row, column; /* indices */

int count; /* counter */

int size; /* Square size */
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printf (“Enter the size of the square: ”);

scanf(“%d’, &size);

/* check for input errors */

if (size<1 || size>MAX_SIZE+1) {

fprintf(stderr, “Error! Size is out of range\n”);

exit(1);

}

if (!(size % 2))   {

fprintf(stderr, “Error! Size is even”);

exit(1);

}

for (i=0; i<size; i++)

for (j=0; j<size; j++)

square[i][j] = 0;

square[0][(size-1)/2] = 1;  /* middle of first row */
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/* i and j are current position  */

i = 0;

j = (size-1) / 2;

for (count = 2; count <= size * size; count++)  {

row = (i-1 < 0) ? (size-1) : (i-1);    /* up */

column = (j-1 < 0) ? (size-1) : (j-1);  /* left */

if (square[row][column]) /* down  */

i = (++i) % size;

else  { /* square is unoccupied */

i = row;

j = column;

}

square[i][j] = count;

}
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/* output the magic square */

printf(“Magic Square of the size %d : \n\n”, size);

for (i = 0; i < size; i++)   {

for (j = 0; j < size; j++)

printf (“%5d”, square[i][j];

printf(“\n”);

}

printf(“\n \ n”);

}
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instance characteristic -- n denoting the size of the magic square.

the nested for loops --

next for loop    --

Others    ---

Total asymptotic complexity is            .
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1.4.4 Practical Complexities

 The time complexity of a program is generally some function of 
the instance characteristics. 

 This complexity function:

 is very useful in determining how the time requirements vary 
as the instance characteristics changes, and 

 may also be used to compare two programs P and Q that 
perform the same task.
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Assume that program P has complexity Θ(n) and 

program Q has complexity Θ(n2).

We can assert that

P is faster than program Q for sufficiently large n.

How the various functions grow with n?
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Instance characteristic n

Time Name 1 2 4 8 16 32

1 Constant 1 1 1 1 1 1

log n Logarithmic 0 1 2 3 4 5

n Linear 1 2 4 8 16 32

nlog n Log linear 0 2 8 24 64 160

n2 Quadratic 1 4 16 64 256 1024

n3 Cubic 1 8 64 512 4096 32768

2n Exponential 2 4 16 256 65536 4294967296

n! Factorial 1 2 24 40326 20922789888000 263131033

Figure 1.7 Function values
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Figure 1.8 Plot of function values
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Figure 1.9 Times on a 1 billion instruction per second computer
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1.5  PERFORMANCE MEASUREMENT

 How to measure real execution time.

 Use of C's standard library.

Functions are accessed through the statement:

#include <time.h>.

 Inaccurate results can be produced for small data

(e.g. if the value of CLK_TCK is 18 on our computer,

the number of clock ticks for n < 500 is less than 10)
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Method 1 Method 2

Start timing Start=clock(); Start=time(NULL);

Stop timing Stop=clock(); Stop=time(NULL);

Type returned Clock_t Time_t

Result in seconds Duration=

((double)(stop-start))/

CLOCKS_PER_SEC;

Duration=

(double) difftime(stop, start);

Figure 1.10: Event timing in C
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Data Engineering & Mobile Computing Laboratory.
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Figure 1.11: Worst case performance of selection sort (in seconds)
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Figure 1.12: Graph of worst case performance of selection sort
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Generating Test Data

 Generating a data set that results in the worst case 
performance  of a program isn't always easy.

 We may generate a suitably large number of random test data.

 Obtaining average case data is usually much harder.

 It is desirable to analyze the algorithm being tested to 
determine classes of data that should be generated for the 
experiment - algorithm specific task.


