
1

Chapter 1 : Basic Concepts

Data Structures Lecture Note
Prof. Sungwon Jung
Data Engineering & Mobile Computing Laboratory

Data Engineering & Mobile Computing Laboratory.
2

Goals

 To provide the tools and techniques necessary to design
and implement large-scale computer systems.

 solid foundation in data abstraction, algorithm specification and

performance analysis and measurement provides the necessary

methodology.

2

Data Engineering & Mobile Computing Laboratory.
3

1.1 SYSTEM LIFE CYCLE

 Requirement

 a set of specifications that define the purpose of the project.

 input/output

 Analysis

 break the problems down into manageable pieces.

 bottom-up / top-down

 Design

 creation of abstract data types

 specification of algorithms and consideration of algorithm
design strategies.

(* language independent *)

Data Engineering & Mobile Computing Laboratory.
4

 Refinement and Coding

 choose representations for data objects and write algorithms
for each operation on them.

 data object's representation can determine the efficiency of
the algorithms related to it.

 Verification

 Developing correctness proof for the program

 Testing the program with a variety of input data

 Error removal

 Performance analysis
 running time

 amount of memory used

3

Data Engineering & Mobile Computing Laboratory.
5

1.2 ALGORITHM SPECIFICATION

1.2.1 Introduction
 Definition:

An algorithm is a finite set of instructions that, if followed,
accomplishes particular task.

All algorithms must satisfy the following criteria:

(1) Input

(2) Output

(3) Definiteness

(4) Finiteness

(5) Effectiveness

algorithm / program (procedure)

Data Engineering & Mobile Computing Laboratory.
6

 How to describe an algorithm

natural language

flowchart

programming language

 Example 1.1 [Selection Sort]

Sorting a set of n  1 integers

From those integers that are currently unsorted,
find the smallest and place it next in the sorted list.

4

Data Engineering & Mobile Computing Laboratory.
7

 [Program 1.1 Selection sort algorithm]

for (i=0; i<n; i++) {

Examine list[i] to list[n-1]

and suppose that the smallest integer is at list[min];

Interchange list[i] and list[min];

}

 first task : finding the smallest integer;

 second task : exchange;

either a function or a macro

Data Engineering & Mobile Computing Laboratory.
8

 [Program 1.2 swap function]

void swap(int *x, int *y)

/* both parameters are pointers to ints */

{

int temp = *x; /* declare temp as an int and assign to it

the contents of what x points to */

*x = *y; /* stores what y points to into the location

where x points */

y = temp; / place the contents of temp in the location

pointed to by y */

}

Call -- swap(&a, &b)

5

Data Engineering & Mobile Computing Laboratory.
9

 macro version of swap -

#define SWAP(x,y,t) ((t) = (x), (x) = (y), (y) = (t))

 [Program 1.3 Selection sort]

void sort (int list[], int n)

{

int i, j, min, temp;

for (i=0; i<n-1; i++) {

min = i;

for (j = i+1; j < n; j++)

if (list[j] < list[min])

min = j;

SWAP(list[i], list[min], temp);

}

}

Data Engineering & Mobile Computing Laboratory.
10

 Theorem 1.1:

Function sort(list,n) correctly sorts a set of n≥1 integers. The

result remains in list[0], . . ., list[n-1] such that
list[0]≤list[1]≤ . . . ≤list[n-1].

proof : consider loop invariant.

6

Data Engineering & Mobile Computing Laboratory.
11

 Example 1.2 [Binary Search]

Find out if an integer searchnum is in a list.

If so, return i such that list[i] = searchnum,
Otherwise, return -1.

For a sorted list (in ascending order)

0 n-1
list :

↑ ↑ ↑
left middle right

middle = (left + right) / 2

Data Engineering & Mobile Computing Laboratory.
12

 Compare list[middle] with searchnum

 searchnum < list[middle]

if searchnum is present, it must be in the position

between left and middle-1.

set right to middle-1.

 searchnum = list[middle]

return middle.

 searchnum > list[middle]

if searchnum is present, it must be in the position

between middle+1 and right.

set left to middle+1

7

Data Engineering & Mobile Computing Laboratory.
13

 Implementing this search strategy :

while (there are more integers to check) {

middle = (left + right) / 2;

if (searchnum < list[middle])

right = middle - 1;

else if (searchnum == list[middle])

return middle;

else left = middle + 1;

}

Data Engineering & Mobile Computing Laboratory.
14

 Handling the comparisons:

< returns -1

= 0

> 1

8

Data Engineering & Mobile Computing Laboratory.
15

 function -

int compare (int x, int y)

{

/* compare x and y, return -1 for less than,

0 for equal, 1 for greater */

if (x < y) return -1;

else if (x == y) return 0;

else return 1;

}

 macro -

define COMPARE (x,y) ((x) < (y)) ? -1: ((x) == (y)) ? 0: 1)

Data Engineering & Mobile Computing Laboratory.
16

 [Program 1.6]

int binsearch(int list[], int searchnum, int left, int right)
{

/* search list[0] <= list[1] <= . . . <= list[n-1] for searchnum.
Return its position if found. Otherwise return -1 */

int middle;
while (left <= right) {

middle = (left + right)/2;
switch (COMPARE(list[middle], searchnum)) {

case -1 : left = middle + 1;
break;

case 0 : return middle;
case 1 : right = middle - 1;

}
}
return -1;

}

9

Data Engineering & Mobile Computing Laboratory.
17

1.2.2 Recursive Algorithms

Direct recursion

Indirect recursion

 Recursion is a general control scheme.

 Often recursive function is easier to understand than its iterative
counterpart.

 Many problems can be defined recursively in natural way.

Data Engineering & Mobile Computing Laboratory.
18

 [Binomial Coefficients]

can be recursively computed by the formula:

10

Data Engineering & Mobile Computing Laboratory.
19

 Examples :

 [factorial]

n! = { n * (n-1)! if n>1

1 if n=1

 [Binary search]

Bsrch[key, left, middle-1]

if key < list[middle]

Bsrch[key, left, right] = list[middle]

if key = list[middle]

Bsrch[key, middle+1, right]

if key > list[middle]

Data Engineering & Mobile Computing Laboratory.
20

 [Fibonacci numbers]

0 if n=0

fn = 1 if n=1

fn-1 + fn-2 if n>1

 [Permutations]

We can construct the set of permutations by printing:

(1) a followed by all permutations of (b, c, d)

(2) b followed by all permutations of (a, c, d)

(3) c followed by all permutations of (a, b, d)

(4) d followed by all permutations of (a, b, c)

11

Data Engineering & Mobile Computing Laboratory.
21

Iterative function

int fibo(int n)
{

int g, h, f, i;
if (n>1) {

g = 0;
h = 1;
for (i = 2; i<= n; i++) {

f = g+h;
g = h;
h = f;

}
}
else f = n;
return f;

}

Recursive function

int rfibo (int n)
{

if (n > 1)
return rfibo(n-1) + rfibo(n-2);

else
return n;

}

Data Engineering & Mobile Computing Laboratory.
22

 [Program 1.7]

int binsearch(int list[], int searchnum, int left, int right)

{
/* search list[0] <= list[1] <= . . . <= list[n-1] for searchnum.

Return its position if found. Otherwise return -1 */

int middle;
if (left <= right) {

middle = (left + right)/2;
switch (COMPARE(list[middle], searchnum)) {

case -1 : return binsearch(list, searchnum, middle + 1, right);
case 0 : return middle;
case 1 : return binsearch(list, searchnum, left, middle - 1);

}
}
return -1;

}

12

Data Engineering & Mobile Computing Laboratory.
23

 [Program 1.8]
void perm(char *list, int i, int n)
{

/* generate all the permutations of list[i] to list[n] */
int j, temp;
if (i == n) {

for (j=0; j<=n; j++) printf("%c", list[j]);
printf(" ");

}
else {
/* list[i] to list[n] has more than one permutation,

generate these recursively */
for (j=i; j<=n; j++) {

SWAP(list[i], list[j], temp);
perm(list, i+1, n);
SWAP(list[i], list[j], temp);

}
}

}

Data Engineering & Mobile Computing Laboratory.
24

1.3 DATA ABSTRACTION

 basic data types of C :

char, int, float, double, . . .

short, long, unsigned

 mechanisms for grouping data together :

Arrays and Structs

int list[5];

struct student {

char last_name[10];

int student_id;

char grade;

};

13

Data Engineering & Mobile Computing Laboratory.
25

 pointer data type :

for every basic data type

there is a corresponding pointer data type, such as

pointer-to-an-int,

pointer-to-a-real,

pointer-to-a-char,

and pointer-to-a-float.

int i, *pi;

predefined data types / user-defined data types

Data Engineering & Mobile Computing Laboratory.
26

"What is a data type?"

 Definition :

A data type is a collection of objects and a set of operations
that act on those objects.

▶ specification of objects

e.g., type int,

{0, +1, -1, +2, -2, . . ., INT_MAX, INT_MIN}

specification of operations

▶ representation of objects

implementation of operations

14

Data Engineering & Mobile Computing Laboratory.
27

 Definition :

An abstract data type (ADT) is a data type that is organized in
such a way that the specification of the objects and the
specification of the operations on the objects is separated from
the representation of the objects and the implementation of the
operations.

 an abstract data type is implementation independent.

Specification of operations consists of the names of operations,
the type of its arguments, and the type of its result. Also a
description what the function does without appealing to internal
representation details.

package in Ada

class in C++

Data Engineering & Mobile Computing Laboratory.
28

 Categories to classify the operations of a data types:

 Creator/constructor

 Transformers

 Observers/reporters

15

Data Engineering & Mobile Computing Laboratory.
29

 Example 1.5 [Abstract data type Natural_Number]

ADT Natural_Number is
object: an ordered subrange of the integers starting at zero and ending at the
maximum integer (INT_MAX) on the computer
functions:

for all x, y IN Nat_Number, TRUE, FALSE IN Boolean
and where +, -, <, and == are usual integer operations

Nat_No Zero() ::= 0
Boolean Is_Zero(x) ::= if (x) return FALSE

else return TRUE
Nat_No Add(x, y) ::= if ((x+y)<= INT_MAX) return x+y

else return INT_MAX
Boolean Equal(x, y) ::= if (x==y) return TRUE

else return FALSE
Nat_No Successor(x) ::= if (x == INT_MAX) return x

else return x+1
Nat_No Subtract(x,y) ::= if (x<y) return 0

else return x-y
end Natural_Number

Data Engineering & Mobile Computing Laboratory.
30

1.4 PERFORMANCE ANALYSIS

 Criteria of judging a program:

1. Does the program meet the original specification of the
task?

2. Does it work correctly?

3. Is the program well documented?

4. Does the program effectively use functions to create logical
units?

5. Is the program’s code readable?

[Performance Evaluation]

6. Does the program efficiently use primary and secondary
storage?

7. Is the program’s running time acceptable for the task?

16

Data Engineering & Mobile Computing Laboratory.
31

 Performance Analysis :

estimates of time and space that are machine independent.

 Performance Measurement :

obtaining machine-dependent running times.

used to identify inefficient code segments.

 Definition :

The space complexity of a program is the amount of
memory that it needs to run to completion.

The time complexity of a program is the amount of
computer time that it needs to run to completion.

Data Engineering & Mobile Computing Laboratory.
32

1.4.1 Space Complexity

 Fixed space requirements :

independent from the number and size of the program's inputs
and outputs, e.g., the instruction space, space for simple
variables, fixed-size structured variables, and constants.

 Variable space requirements :

space needed by structured variables whose size depends on
the particular instance, I, of the problem being solved.

(I)

S(P) = c + (I)
SP

PS

17

Data Engineering & Mobile Computing Laboratory.
33

 Example 1.6 : [simple arithmetic function]

(I) = 0.

[Program 1.9]

float abc (float a, float b, float c)

{

return a+b+b*c + (a+b-c)/(a+b) + 4.00;

}

Sabc

Data Engineering & Mobile Computing Laboratory.
34

 Example 1.7 : [adding a list of numbers iteratively]

[Program 1.10]

float sum(float list[], int n)

{
float tempsum = 0;
int i;
for (i=0; i<n; i++)

tempsum += list[i];
return tempsum;

}

(n) = n if parameters are passed by value.
(n) = 0 if parameters are passed by reference

S sum

S sum

18

Data Engineering & Mobile Computing Laboratory.
35

 Example 1.8 : [adding a list of numbers recursively]

[Program 1.11]

float rsum(float list[], int n)

{

if (n) return rsum(list, n-1) + list[n-1];

return 0;

}

(n) = 12*nS rsum

Data Engineering & Mobile Computing Laboratory.
36

Figure 1.1 : Space needed for one recursive call of program 1.11

Type Name Number of bytes

parameter: array pointer
parameter: integer
return address: (used internally)

list[]
n

4
4
4

TOTAL per recursive call 12

19

Data Engineering & Mobile Computing Laboratory.
37

1.4.2 Time Complexity

(1) Compile Time

(2) Execution (Running) Time

We are really concerned only with the program's execution time.

Data Engineering & Mobile Computing Laboratory.
38

 Determining the execution time :
 the times needed to perform each operation.
 the number of each operation performed for the given

instance (dependent on the compiler).

 Obtaining such a detailed estimate of running time is rarely
worth the effort.

 Counting the number of operations the program performs gives
us a machine-independent estimate.

20

Data Engineering & Mobile Computing Laboratory.
39

 Definition :

A program step is a syntactically or semantically meaningful
program segment whose execution time is independent of the
instance characteristics.

Determining the number of steps that a program or a function
needs to solve a particular problem instance by creating a
global variable, count, and inserting statements that increment
count

Data Engineering & Mobile Computing Laboratory.
40

 [Example 1.9] [Iterative summing of a list of numbers]

[Program 1.12]

float sum(float list[], int n)

{

float tempsum = 0; count++; /*for assignment*/

int i;

for (i=0; i<n; i++) {

count++; /*for the for loop */

tempsum += list[i]; count++; /*for assignment*/

}

count++; /* last execution of for */

count++; /* for return */ return tempsum;

}

21

Data Engineering & Mobile Computing Laboratory.
41

[Program 1.13]

float sum(float list[], int n)

{
float tempsum = 0;
int i;
for (i=0; i<n; i++)

count += 2; /*for the for loop */
count += 3;
return 0;

}

If the initial value of count is 0, its final value will be 2n+3 .

Data Engineering & Mobile Computing Laboratory.
42

 [Example 1.10] [Recursive summing of a list of numbers]

[Program 1.14]

float rsum(float list[], int n)

{

count++; /* for if conditional */

if (n) {

count++; /* for return and rsum invocation */

return rsum(list, n-1) + list[n-1];

}

count++;

return list[0];

}

the step count is 2n+2 .

22

Data Engineering & Mobile Computing Laboratory.
43

 [Example 1.11] : [Matrix addition]

[Program 1.15]

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],

int c[][MAX_SIZE], int rows, int cols)

{

int i, j;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++)

c[i][j] = a[i][j] + b[i][j];

}

Data Engineering & Mobile Computing Laboratory.
44

[Program 1.16]

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],

int c[][MAX_SIZE], int rows, int cols)
{

int i, j;
for (i=0; i<rows; i++) {

count++; /* for i for loop */
for (j=0; j<cols; j++) {

count++; /* for j for loop */
c[i][j] = a[i][j] + b[i][j];
count++; /* for assignment statement */

}
count++; /* last time of j for loop */

}
count++; /* last time of i for loop */

}

23

Data Engineering & Mobile Computing Laboratory.
45

[Program 1.17]

void add(int a[][MAX_SIZE], int b[][MAX_SIZE],

int c[][MAX_SIZE], int rows, int cols)

{

int i, j;

for (i=0; i<rows; i++) {

for (j=0; j<cols; j++)

count += 2;

count += 2;

}

count++;

}

The step count will be 2 rows *cols + 2rows +1

Data Engineering & Mobile Computing Laboratory.
46

 Tabular method: steps/execution

[Figure 1.2]

Statement s/e Frequency Total steps

float sum(float list[], int n)

{

float tempsum=0;

int i;

for (i=0; i<n; i++)

tempsum += list[i];

return tempsum;

}

0 0 0

0 0 0

1 1 1

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+3

24

Data Engineering & Mobile Computing Laboratory.
47

 [Example 1.13]

[Figure 1.3]

Statement s/e Frequency Total steps

float rsum(float list[], int n)

{

if (n)

return rsum(list, n-1)+list[n-1];

return list[0];

}

0 0 0

0 0 0

1 n+1 n+1

1 n n

1 1 1

0 0 0

Total 2n+2

Data Engineering & Mobile Computing Laboratory.
48

 [Example 1.14]

[Figure 1.4]

Statement s/e Frequency Total Steps

void add(int a[][MAX_SIZE])

{

int i, j;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++)

c[i][j]=a[i][j]+b[i][j];

}

0 0 0

0 0 0

0 0 0

1 rows + 1 rows + 1

1 rows·(cols+1) rows·cols + rows

1 rows·cols rows·cols

0 0 0

Total 2rows·cols + 2rows + 1

25

Data Engineering & Mobile Computing Laboratory.
49

Summary

 Time complexity of a program is given by the number of steps
taken by the program to compute the function it was written for.

 The number of steps is itself a function of the instance
characteristics.

e.g., the number of inputs, the number of outputs,

the magnitudes of the inputs and outputs, etc.

 Before the step count of a program can be determined, we need
to know exactly which characteristics of the problem are to be
used.

Data Engineering & Mobile Computing Laboratory.
50

 For many programs, the time complexity is not dependent solely
on the characteristics specified.

 The step count varies for different inputs of the same size.
Best case
Worst case
Average

Examples :
Binary Search
Insertion Sort

26

Data Engineering & Mobile Computing Laboratory.
51

1.4.3 Asymptotic Notation (Ο, Ω, Θ)

 Our motivation to determine step counts:

to compare the time complexities of two programs for the same
function, and

to predict the growth in run time as the instance characteristics
change.

Data Engineering & Mobile Computing Laboratory.
52

 Determining the exact step count (either worst case or average)
of a program can prove to be an exceedingly difficult task.

 Expending immense effort to determine the step count exactly
isn't a worthwhile endeavor as the notion of a step is itself
inexact.
(e.g., x = y and x = y+z+(x/y)+(x*y*z-x/t) count as one step)

 Because of the inexactness of what a step stands for, the exact
step count isn't very useful for comparative purposes.

27

Data Engineering & Mobile Computing Laboratory.
53

 For most situations, step counts can be represented
as a function of instance characteristics, such as

≤ (n) ≤ or (n, m) = n + m.

What if the difference of two step counts are large?
e.g., 3n+3 versus 100n+10.

What if two step counts are of different orders?
e.g., + n versus n.

 break even point :
The exact break even point cannot be determined analytically.
The programs have to be run on a computer

in order to determine the break even point.

c1n
2

T P c2 n
2

T Q c1 c2

c1 n
2

c2 c3

Data Engineering & Mobile Computing Laboratory.
54

Some terminology :

Definition : [Big "oh"]

f(n) = (g(n))

iff there exist positive constants c and

such that f(n) c g(n)

for all n, n .

n0 
n0

28

Data Engineering & Mobile Computing Laboratory.
55

Data Engineering & Mobile Computing Laboratory.
56

a constant quadratic

logarithm cubic

linear exponential

In order for the statement to be informative,

should be as small a function of n as one can come up with for

which .

29

Data Engineering & Mobile Computing Laboratory.
57

 Theorem 1.2 :

If , then .

 Proof :

So,

SO,

Data Engineering & Mobile Computing Laboratory.
58

 Definition : [Omega]

iff there exist positive constants

and such that

for all .

30

Data Engineering & Mobile Computing Laboratory.
59

 Example 1.16 :

Data Engineering & Mobile Computing Laboratory.
60

In order for the statement to be informative,

should be as large a function of

as possible for which is true.

 Theorem 1.3 :

If and ,

then .

31

Data Engineering & Mobile Computing Laboratory.
61

 Definition : [Theta]

iff there exist positive constants

and such that

for all .

Data Engineering & Mobile Computing Laboratory.
62

 Example 1.17 :

32

Data Engineering & Mobile Computing Laboratory.
63

 Theorem 1.4 :

If and ,

then .

 Example 1.18: [Complexity of matrix addition]

Data Engineering & Mobile Computing Laboratory.
64

 Example 1.19 : [Binary Search]

[Program 1.6]

The instance characteristic -- number of elements in the list.

Each iteration of while loop takes Θ(1) time.

The while loop is iterated at most times.

Worst case - the loop is iterated Θ(log n) times

Best case - Θ(1).

33

Data Engineering & Mobile Computing Laboratory.
65

 Example 1.21 : [Magic square]

The magic square is an matrix of integers from 1 to

such that the sum of each row and column and two major
diagonals is the same.

When n=5 : the common sum is 65.

Data Engineering & Mobile Computing Laboratory.
66

 Coxeter's rule :

Put a one in the middle of the top row. Go up and left
assigning numbers in increasing order to empty boxes. If your
move cause you to jump off the square (that is, you go beyond
the square's boundaries), figure out where you would be if you
landed on a box on the opposite side of the square. Continue
with this box. If a box is occupied, go down instead of up and
continue.

34

Data Engineering & Mobile Computing Laboratory.
67

[Program 1.22]

#include <stdio.h>

#define MAX_SIZE 15 /* maximum size of square */

void main(void)

/* construct a magic square, iteratively */

{

static int square[MAX_SIZE] [MAX_SIZE];

int i, j, row, column; /* indices */

int count; /* counter */

int size; /* Square size */

Data Engineering & Mobile Computing Laboratory.
68

printf (“Enter the size of the square: ”);

scanf(“%d’, &size);

/* check for input errors */

if (size<1 || size>MAX_SIZE+1) {

fprintf(stderr, “Error! Size is out of range\n”);

exit(1);

}

if (!(size % 2)) {

fprintf(stderr, “Error! Size is even”);

exit(1);

}

for (i=0; i<size; i++)

for (j=0; j<size; j++)

square[i][j] = 0;

square[0][(size-1)/2] = 1; /* middle of first row */

35

Data Engineering & Mobile Computing Laboratory.
69

/* i and j are current position */

i = 0;

j = (size-1) / 2;

for (count = 2; count <= size * size; count++) {

row = (i-1 < 0) ? (size-1) : (i-1); /* up */

column = (j-1 < 0) ? (size-1) : (j-1); /* left */

if (square[row][column]) /* down */

i = (++i) % size;

else { /* square is unoccupied */

i = row;

j = column;

}

square[i][j] = count;

}

Data Engineering & Mobile Computing Laboratory.
70

/* output the magic square */

printf(“Magic Square of the size %d : \n\n”, size);

for (i = 0; i < size; i++) {

for (j = 0; j < size; j++)

printf (“%5d”, square[i][j];

printf(“\n”);

}

printf(“\n \ n”);

}

36

Data Engineering & Mobile Computing Laboratory.
71

instance characteristic -- n denoting the size of the magic square.

the nested for loops --

next for loop --

Others ---

Total asymptotic complexity is .

Data Engineering & Mobile Computing Laboratory.
72

1.4.4 Practical Complexities

 The time complexity of a program is generally some function of
the instance characteristics.

 This complexity function:

 is very useful in determining how the time requirements vary
as the instance characteristics changes, and

 may also be used to compare two programs P and Q that
perform the same task.

37

Data Engineering & Mobile Computing Laboratory.
73

Assume that program P has complexity Θ(n) and

program Q has complexity Θ(n2).

We can assert that

P is faster than program Q for sufficiently large n.

How the various functions grow with n?

Data Engineering & Mobile Computing Laboratory.
74

Instance characteristic n

Time Name 1 2 4 8 16 32

1 Constant 1 1 1 1 1 1

log n Logarithmic 0 1 2 3 4 5

n Linear 1 2 4 8 16 32

nlog n Log linear 0 2 8 24 64 160

n2 Quadratic 1 4 16 64 256 1024

n3 Cubic 1 8 64 512 4096 32768

2n Exponential 2 4 16 256 65536 4294967296

n! Factorial 1 2 24 40326 20922789888000 263131033

Figure 1.7 Function values

38

Data Engineering & Mobile Computing Laboratory.
75

Figure 1.8 Plot of function values

Data Engineering & Mobile Computing Laboratory.
76

Figure 1.9 Times on a 1 billion instruction per second computer

39

Data Engineering & Mobile Computing Laboratory.
77

1.5 PERFORMANCE MEASUREMENT

 How to measure real execution time.

 Use of C's standard library.

Functions are accessed through the statement:

#include <time.h>.

 Inaccurate results can be produced for small data

(e.g. if the value of CLK_TCK is 18 on our computer,

the number of clock ticks for n < 500 is less than 10)

Data Engineering & Mobile Computing Laboratory.
78

Method 1 Method 2

Start timing Start=clock(); Start=time(NULL);

Stop timing Stop=clock(); Stop=time(NULL);

Type returned Clock_t Time_t

Result in seconds Duration=

((double)(stop-start))/

CLOCKS_PER_SEC;

Duration=

(double) difftime(stop, start);

Figure 1.10: Event timing in C

40

Data Engineering & Mobile Computing Laboratory.
79

Data Engineering & Mobile Computing Laboratory.
80

41

Data Engineering & Mobile Computing Laboratory.
81

Figure 1.11: Worst case performance of selection sort (in seconds)

Data Engineering & Mobile Computing Laboratory.
82

Figure 1.12: Graph of worst case performance of selection sort

42

Data Engineering & Mobile Computing Laboratory.
83

Generating Test Data

 Generating a data set that results in the worst case
performance of a program isn't always easy.

 We may generate a suitably large number of random test data.

 Obtaining average case data is usually much harder.

 It is desirable to analyze the algorithm being tested to
determine classes of data that should be generated for the
experiment - algorithm specific task.

